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Absfmct: Use of organoaluminum reagents induces ette-like reactions of enol silyl ethers with aldehydes, and enols having 

bulky silyl groups selectively afforded syn adducu. 

Ene reaction& of carbonyl compounds have been widely used for selective carbon-carbon bond forma- 

tion. We recently reported stereoselective ene reactions of 2-(alkylthio)allyl silyl ethers with a wide range of 

aldehydes.3) In connection with our previous findings, our interest was next focused to the reactivity of enol 

ethers as ene substrates. Although reactions of enol silyl ethers with aldehydes have been well recognized as 

Mukaiyama aldo reaction?) several ene-like reactions of enol ethers have also been reported by us% and 0thers.Q 

This paper describes ene-like reactions of enol ethers with aldehydes and theii stereochemical results. 
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Several investigations (see Table) disclosed synthetically useful results to favor the ene-like reaction as 

follows. (1) Although most of Lewis acids effect aldol reactions between I-trimethylsiloxycyclohexene la snd 

aldehydes. use of organoahrminum reagents has proven of great advantage to induce the ene-like reaction (entry 

1).7) In addition to MqAlCl. EtzAII and MaAl are also effective. (2) The bulkiness of the silyl group is crucial to 

control the reaction course; bulkier silyl groups seem to disfavor the cleavage of 0-Si bond , which leads to 

selective formation of products of type B (entries 2-6). Alkyl enol ethers are also employable as good ene 

substrates (entries 7.8). (3) Use of non-polar solvent such as toluene or hexane also facilitates the ene type 

reaction. In the presence of MeZAlCl, for example. the reaction of Ic with benxaldehyde in CH2Cl2 afforded only 

the aldol product A (95% yield), whereas the ene adduct B was obtained in 75 % yield along with the al&l 
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syn : anti ’ 
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86h 76 : 24 

81h 91: 9 

75h 83: 17 

82h 51 : 49 

62h 94: 8 

43h 88112 

‘)Reactions were performed in CH&l~ at -78 ‘C. b)Isolated yield. “Determined by ‘H-NMR or 

CC. d)Aldol product was obtained in 46% yield. ‘kereochemistry is not determined. 

?he reaction was performed in toluene. @The ratio of geometrical isomers (Z : Ii+) was 91 : 9. 

hh+he reaction was pe rfomwd in hexane. 
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product (18%) by using toluene as the solvent. Further, the reaction mode could be controlled almost completely 

by performing the reaction in toluene using EtzAlI (entry 5). 

To determine the mechanism either concerted or stepwise. the reaction of Clbutyl- I-siloxycyclohexene 2 was 

attempted. A concerted process involving selective abstraction of an axial al-hydrogen should produce only two 

diastereomers among possible four isomers, but the results of entry 9 suggest a stepwise mechanism.B) 

Further, it should be worthy to note this methodology allows a highly chemoselective transformation. The 

following two results qresent typical examples. 
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In the reactions with heptanal, enol silyl ethers la-d afforded the syn adducts*) with moderate selectivity. On 

the contrary, methyl enol ether le showed anti selectivity (entries 7.8). 

Acyclic enol ethers revealed much interesting results: Both Z- and E-enol ethers of diethyl ketone (5a.b) 

preferentially afforded syn adducts, and the selectivity increased with the bulkiness of the silyl group (entries 14. 

15, 17, 18). Simple application of open chain transition state mode@) may account for the results of Z-silyl enol 
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ethers, but not those of E-enol ethers. 

Taking the effect of the bulkiness of the silyl group into 

and to the alkyl group of the aldehyde, disfavors TS-Zl and TS-El. Consequently. the reactions 

preferentially proceed through TS-Z2 and TS-E2 to afford the syn addition products. 

In summary, the present methodology provides an alternative transformation of enol ethers with aldehydes. 

We are currently investigating scopes of the these reactions in mote details. 
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